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This article estimates the number of breaks and their locations in the covariance
structure of a series based on the evolutionary spectral density and uses some stan-
dard information criteria. The adopted approach is non-parametric and does not
privilege a priori any modelling of the series. One carries out a Monte Carlo analysis
and an empirical illustration using the daily return series of exchange rate euro/US
dollar to support the relevance of the theory and to produce additional insights. The
simulation results are globally adequate and show that the criteria having heavy
penalty are more accurate in the selection of the number of breaks. The empirical
results indicate that the covariance structure of the return series considerably varies
between 30 March 2000 and 6 April 2001. The unconditional volatility appears non-

constant over this interval.

I. INTRODUCTION

The question of selecting the number of changes in the level
(mean-shifts) or trend of a time series acquires a capital
importance in the literature. Indeed, Yao (1988), Yao
and Au (1989) and Yin (1988) have considered models
with structural change in the level and have estimated the
number of mean-shifts using the Bayesian information
criterion. Ben Aissa and Jouini (2003) evoked the instabil-
ity problem when the change affects the level and the per-
sistence of an autoregressive process of order 1 and used
some standard information criteria to estimate the number
of breaks and their locations in the US inflation. They
found economic explanations to show why in the detected
dates there are changes in the US inflation process and
their results show in particular that the evolution curve

*Corresponding author. E-mail: jouini(@ ehess.vcharite.univ-mrs.fr

of the inflation was flattened during the last 20 years
since it is noted that this reduction in extent of inflation
is stable and durable.

All this literature focuses on the instability problems in
the time of the first moment of the series. However, this
article is interested in detecting regime shifts of the second
moment, that is the covariance function based on the
evolutionary spectral density. The practical importance of
instability of the second moment has been highlighted
through an assessment of several economic and financial
series. In this context, Pagan and Schwert (1990) studied
the instability of the covariance structure of monthly US
stock return series. Using series of large size, Mikosch and
Starica (2004) explained some classic stylized facts (long-
range dependence) by regime shifts of the unconditional
volatility.
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The purpose of this article is to estimate the number and
the locations of breaks corresponding to regime shifts in
the covariance structure of the studied series. It focuses on
series having different stationarity forms in several
successive intervals. Because the covariance function of
stationary process is the Fourier transform of the spectral
density, one of the best approaches to studying the stability
of the covariance structure is to studying the stability of the
spectral density. This approach has been adopted by von
Sachs and Neumann (2000), and then by Ahamada and
Boutahar (2002) to develop stationarity tests of the covari-
ance structure. This article follows such work. First, it esti-
mates a time spectral density based on the theory of the
evolutionary spectrum of Priestley (1965, 1996). Then, it
estimates the number of breaks and their locations by
examining changes in spectral density form.

The article is organized as follows: Section II recalls the
theory of the evolutionary spectrum of Priestley (1965).
Section III shows how the evolutionary spectral density
can be used to locate the structure changes of the covari-
ance function. It also surveys the structural change model
and some selection procedures allowing to estimate the
number of breaks. The heart of the article is Sections IV
and V where some Monte Carlo experiments and an
empirical application using the daily return series of
exchange rate euro/US dollar are performed. The simula-
tion results are globally adequate and the empirical results
reveal some structural changes in the unconditional volatil-
ity of the return series of exchange rate. These last results
show again that the treatment of long financial series using
classic tools implying the second moment stationarity (long
memory, family of models ARCH) is not always justified
and in this case models with variable coefficients can be
adapted. It is in this direction that these results are brought
closer to those obtained by Mikosch and Starica (2004)
or by Loretan and Phillips (1994). Some concluding
comments are offered in Section VI.

II. THEORY OF THE EVOLUTIONARY
SPECTRUM

Definition

Priestley’s (1965) theory of the evolutionary spectrum is
concerned with oscillatory processes, that is processes,
{X,} defined as follows:

n 7
X, = [ A w)e dZ(w) (1)

=%

where for each w, the sequence { A,(w)}, as function of ¢, has
a generalized Fourier transform whose modulus has an

""This condition implies that E(X,)=0.
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absolute maximum at the origin. {Z(w)} is an orthogonal
process on [—1. ] with E[dZ(w)]=0," E[|dZ(w)’]= du(w).
where p(w) 1s a positive measure. Without loss of general-
ity. the evolutionary spectral density of the process {X,} is
given by:

dH (w)

dew

hi(w) = —T<w<m 2)

where dH(w)=|A4(w)] du(w). Priestley’s evolutionary
spectrum theory is a particularly attractive concept since
it has a physical interpretation. It encompasses most other
approaches as special cases and includes many types of
non-stationary processes. The instantaneous variance of
{X,} is given by:

T

o7 = var(X,) = f h(w) dew (3)

—

These relations show that all modifications in the time of
the covariance structure of the studied series may be cap-
tured by studying the stability of the evolutionary spectral
density /(). In particular, the relation given by Equation
3 shows that a modification of the variance of the process
necessarily entails a variation of h(w) with respect to the
variable time.

Estimation of the evolutionary spectral density

An estimator of h/(w) at time ¢ and frequency w can be
obtained using two windows {g, and {w,}. Without
loss of generality, the estimator /i, (w) is constructed as
follows:

/;,-(ﬂ-’) - Z ﬂ)l,l {J’:_l,(ﬂ))ll (4)

veZ

—fe(f—u)

where Ulw) =Y., 8. X-u€ One chooses the

following windows {g,} and {w,}:

. | V/@vhm). i ui<h,

8u ) g dw]ZII/T~|r IU|$T/2
0, if |u| > h,

0, if|u>T)2
(5)

From Priestley (1988), E(i;,[cu)) =~ h(w), var(ﬁ,(a})) decreases

as T increases and Y(1,. t;). Y(w,, @), covlh, (@), (w;)] =

0 if at least one of the following conditions (i) or (ii) is
satisfied:’

@) 6 —tal 2 T" (i) oy £ o) > g (6)

 For more details on the relations (i) and (ii) and the choice of h and T . the readers are referred to Priestley and Rao (1969).
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ITI. DETECTION OF BREAKS IN THE
COVARIANCE STRUCTURE

Let {X,}", be data from a discrete process {X,} with the-
oretical evolutionary spectral density h(w). One considers
the grid of times {r, = T'i}._,, where /=[7/T"] ([.]) denotes
the integer part of argument) and the grid of frequencies
{w; = (m/20)(1 + 3(j — 1))}—,. This implies that {7} and
{w;} satisfy the above-mentioned conditions (i) and (ii).
Let Y; =In(h (), and h;=In(h(w;). From Priestley
and Rao (1969). one has:

Yi'j =~ h‘l -+ {’,-J (7)

where the sequence {e;} is approximately uncorrelated
and identically distributed normal. Equation 7 may also
be written as:

Y, = h +e (8)

where Y, = (1/h) ELI Yy and h; = (1/h) ZL; hy;. In other
words, Y; and h; are respectively the means of logarithm of
the estimated and theoretical spectral densities They are
means on the frequency grid {w; = (m/20)(1 4+ 3(j — I))}'r’:].
The number of taken values 4; depends on the number of
regime shifts of the series {X,)/,. Indeed, on each interval
where the series is stationary, the evolutionary spectral
density is independent of time, that is /; is constant with
respect to i/ on each of the intervals corresponding to
regime-shifts. The model is then with change in mean
(mean-shift model). More precisely, if the series is station-
ary on a sequence of m+ 1 successive intervals {7}/,
with §, C {t; =TI}, NI, =@ if £ and UMHT) =
{1, = T'i}._,, then the model given by Equation 8 becomes
a mean-shift model with m breaks for the value of the
spectral density #;:

Y, =h+e; 9)

where /; is a constant,” ;= h; for all 1, € I,. One applies
some selection procedures to this model so as to estimate
the number of structural breaks and their locations. Note
that the dates corresponding to structural changes will be
estimated among the points of the grid {r; = T/i}_,. In the
remainder of this section we describe the structural change
model, the estimation method allowing to estimate the
unknown parameters, and the selection procedures.

Structural change model and estimators

Consider the following structural change model with m
mean-shifts:

Yj_ = h; +e. I€ I.l (10)

where [;={(k;_\+D)T',...,k T’} for I=1,...,m+ 1 with
ko=0and k,,, =1 Y, is the observed dependent variable,
hy (1 <l<=m-+1) are the regression coefficients with
ho#h, 1 (1 <t<m); and ¢; is the disturbance. The break
dates (k.. .., k,,) are explicitly treated as unknown. Note
that this is a pure structural change model where all the
coefficients are subject to change. The purpose is to esti-
mate the unknown regression coefficients and the break
dates (hy, ..., B i1 k1s. .., k) when T observations on Y,
are available. Let h=(hy, hae ... hpy o).

The estimation method considered is that based on the
least-squares principle proposed in Bai and Perron (1998).
This method is described as follows. For each m-partition
(it k..), denoted {k,}, the associated least-squares esti-
mate of /; is obtained by minimizing the sum of squared
residuals 370" Y8, (Y, — ). Let h({k;)) denote the
resulting estimate. Substituting it in the objective function
and denoting the resulting sum of squared residuals as
Siky,....k,,), the estimated break dates (k;.....k,) are
obtained as:

(ki,....k,)=arg min S;(k.....k,)

(oo )

where the minimization is taken over all partitions
(ST k,) such that k,—k, _,>#.* Thus the break date
estimators are global minimizers of the objective function.
Finally, the estimated regression parameters are the asso-
ciated least-squares estimates at the estimated m-partition
{k;}, that is h = h({k;}). For our Monte Carlo exploration
and empirical illustration, we use the efficient algorithm
developed in Bai and Perron (2003) based on the principle
of dynamic programming which allows global minimizers
to be obtained using a number of sums of squared residuals
that is of order O(F°) for any m=> 2.

Model selection procedures

A common procedure for the selection of a model dimen-
sion is to consider an information criterion. Schwarz (1978)
proposes the following criterion:

SIC(m) = In(Sy(ky, ... .. k) /(I —m)) + 2p* In(D)/1

where p*=2m+ 1 is the number of unknown parameters.
Yao (1988) uses the Bayesian information criterion defined
as:

k) 1)+ ptIn()/1

He showed that the estimator of the number of changes m
is consistent (at least for normal sequence of random vari-
ables with shifts in mean) for m", the true number of
breaks, provided m” < M with M a known upper bound

BIC(m) = ln(S;(fEl, .

* This is because the spectral density is independent of time in each interval where the process is stationary.
*Note that ¢ is the minimal number of observations in each segment (6 > 1, not depending on 7). From Bai and Perron (2003), if tests are
required, then # must be set of [¢/] for some arbitrary small positive number &.
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for m. Another criterion proposed by Yao and Au (1989) is
given by:

YIC(m) = in(S’,(A:,. ....]:',,,.)/! ) =mC;/1
where {C,} is any sequence satisfying C,/ /" — oo and
Cy/[I— 0 as I— oo for some positive integer n. The error
term is with finite 2nth moment for any » > 3. In our simu-
lation experiments. we use the sequence C;=0.3687"7 pro-
posed by Liu et al. (1997) who suggest a modified Schwarz’
criterion that takes the form:

MIC(m) = In(S;(ky, ... ky)/(I — p*)) + p*eolln(DFH /1

They suggest using ¢, =0.299 and §,=0.1 based on the
performance of the estimator of the number of breaks
obtained by the criterion MIC for various simulation
experiments carried out with several models. Note that
these information criteria cannot directly take into
account the effect of different distributions of the data
and the errors across subsamples and possible serial corre-
lation in the disturbances. The estimated number of
break dates m is determined by minimizing the
above-mentioned information criteria given M a fixed
upper bound for m.

Nunes er al. (1996) showed that the criterion BIC
tends to select the maximum possible number of changes
for an integrated process of order | without breaks when
one estimates a model with change in mean and change
in trend. Perron (1997) studied, using simulations, the
behaviour of the information criteria BIC and MIC in
the context of estimating the number of breaks in the
trend function of a series in the presence of serial corre-
lation. These criteria perform reasonably well when the
errors are uncorrelated but choose a number of changes
much higher than the true value when serial correlation
is present. When the errors are uncorrelated but a lagged
dependent variable is present, the criterion BIC performs
badly when the coefficient on the lagged dependent vari-
able is large (and more so as it approaches unity). In
such cases, the criterion MIC performs better under the
null hypothesis of no break but underestimates the num-
ber of structural breaks when some are present. His
results show that the conclusions of Nunes et al. (1996)
do not depend on the fact that the data-generating pro-
cess is a random walk; even an AR(l) process with a
correlation degree smaller than one leads to an overesti-
mation of the number of breaks. In the same context,
Boutahar and Jouini (2003) provided mathematical proof
and simulation evidence that for a trend-stationary pro-
cess and a stationary AR(p) process without any struc-
tural break, the information criteria outlined above
spuriously lead to the estimation of a number of changes

*The same selection as Artis er al. (1992) was adopted.
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higher than the true value. They also found that this bias
towards the overestimation is less severe for the criteria
having a heavy penalty. There are other works in the
literature which use these criteria to determine the num-
ber of breaks and their locations based on economic and
financial data. Among these works we find Bai and
Perron (2003) and Jouini and Boutahar (2003).

All the cited works treat the instability problem in
the time of the first moment of the series. However, the
simulations and the empirical assessment carried out in
this article are designed to the selection of the number
and the locations of the breaks in the covariance structure
of the series using the above-mentioned information
criteria.

IV. MONTE CARLO EXPLORATION

This section reports some Monte Carlo experiments to
implement the theoretical results outlined above. It consid-
ers two data-generating processes (DGPs) allowing for
respectively the presence of one and two breaks in the
variance. To compute the estimator of the evolutionary
spectral density, the parameters of the windows {g,} and
{w,} are set at h=7." and T'=20. The minimal number
of observations in each segment # and the maximum per-
mitted number of breaks M take value 5. The number
of Monte Carlo replications is set at N=200, a smaller
value than one would recommend using in practice because
Monte Carlo experiments in this case are more time
consuming. Then long computing time presents a poten-
tially serious barrier to study the behaviour of the informa-
tion criteria in selecting the number of regime-shifts in the
covariance structure of a series based on the evolutionary
spectral density.

Case of one break

In a first time one supposes that the true DGP for X,
contains one break in the variance:

N, i 1=e=TY

= 11
N.4), if T)<1<T s

i

where N (j. o°) is the normal distribution with mean n
and variance o, T| is the true break date and takes
value 772. The sample size is set at T=2800 and then the
time grid on which we attempt to detect break points will
be {1, = 20i}._,, where /==800/20=40. The estimation of
the model given by Equation 10 provides the results pre-
sented in Table 1.
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Table 1. Percentage of breaks selected by the information criteria

m SIC BIC YIC MIC
0 0.0 0.0 0.0 0.0
1 93.5 58.5 36.5 84.5
2 6.0 26.0 36.5 14.0
3 0.5 15.0 25.5 LS
4 0.0 0.5 1.5 0.0
5 0.0 0.0 0.0 0.0

Table 2. Percentage of breaks selected by the information criteria

m SIC BIC YIC MIC
0 0.0 0.0 0.0 0.0
I 0.0 0.0 0.0 0.0
2 90.5 54.0 39.0 80.5
3 8.5 29.0 30.5 16.0
- 1.0 15.5 27.0 3.0
5 0.0 1.5 35 0.5

Case of two breaks

One now looks at the simulation results where the DGP
contains two structural breaks in the variance:

N@O,1), if 1<t=<T)
X, =1 N0,9/4), if "<1<T1? (12)
N(0, 1), if T3<t<T

where 7} = 7/3 and 7Y = 27/3. Here the sample size is
fixed at T=1200 and then the time grid on which we try to
select break dates will be {1,—:201‘}}':,. where /= 1200/
20=60. The results corresponding to the estimation of
the model given by Equation 10 are reported in Table 2.

For the two models, the criteria BIC and YIC are biased
and the estimators of the number of break dates obtained
by these criteria have some distribution on the set
(mm®+1,....M } where the frequency of selecting the
true number m" is the highest but remains even so low.
On the other hand, the criteria SIC and MIC are more
accurate and perform reasonably well since they select
the true number of changes m” with large proportions.
Note that the simulation results also show that the
break date estimators are consistent since they converge
to their true values.” Globally. the obtained results are
satisfactory.
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V. EMPIRICAL ILLUSTRATION

Ben Aissa er al. (2004) used a test similar to the one based
on the Kolmogorov-Smirnov statistic applied to the evolu-
tionary spectrum, and Bai and Perron’s (1998) selection
procedure based on a sequence of tests to estimate the
number of breaks and their locations in the monthly US
inflation series covering the period 1957:1-2003:4. The
obtained results of the two approaches are similar and
economically significant. They also find that inflation was
perfectly stable and durable during the 1990s. However, at
the beginning of the 2000s the US economy was marked by
a light recession expressed by a decrease of productivity
and an increase in unemployment and inflation.

One now applies the above-mentioned approaches to the
return series of exchange rate euro/US dollar. One consid-
ers daily data from 5 January 1999 to 20 February 2003
(vielding 1056 observations) obtained from the St Louis
Reserve Federal Bank database. As for the simulation
study, h=7, T'=20, and # and M take value 5. The infor-
mation criteria BIC, YIC and MIC select two breaks
located in 30 March 2000 and 6 April 2001 while the
criterion SIC detects zero change. Note that the 95% con-
fidence intervals for the two breaks are respectively
(10 November 1999-27 June 2000) and (2 May 2000
| August 2001).” One remarks that the first break date is
more precisely estimated than the second date since his
95% confidence interval covers a smaller period. These
reported confidence intervals allow for different distribu-
tions of both the regressors and the errors in the different
segments and the possibility of serial correlation in the
disturbances. The heteroscedasticity and autocorrelation
consistent covariance matrix is constructed following
Andrews (1991) using a quadratic kernel with automatic
bandwidth selection based on an AR(1) approximation.
We also allow using pre-whitening as suggested in
Andrews and Monahan (1992)."

These results show that the covariance structure of the
return series of exchange rate euro/US dollar considerably
varies between 30 March 2000 and 6 April 2001. The
unconditional volatility of the series appears no constant
on the considered interval. Indeed, the empirical variances
on the three segments are respectively 3.9 x 10,
7.7 x 10> and 3.8 x 107>, One remarks that the ones of the
first and the last segments are almost identical and a look
at the graph of the series (Fig. 1) might confirm this.
Another feature of substantial importance and that might
produce an additional support to these observations is that
the estimated values of i (1 =/<3) are the same on the

“The corresponding results are not reported here and are available upon request from the authors.
"These confidence intervals are computed using the asymptotic distribution of the estimated break dates derived in Bai and Perron

£1998).

For more details, the readers are referred to Bai and Perron (2003).
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Fig. 1. Return series of exchange rate euro/US dollar

first and the last segments (hy = hy = 0.000007). On the
other hand, the estimated value on the second segment is
hy=2xhy =2 x hy =0.000014.

It seems that the obtained results confirm the recent
works of some authors as Mikosch and Starica (2004)
who showed the difficulty of describing long financial series
with tools retaining the stationarity hypothesis of the
covariance structure (long memory for example). In other
words, a systematic adaptation of the parameters of
the models used to describe long financial series must be
done. These results also confirm those obtained by Loretan
and Phillips (1994).

VI. CONCLUSION

This article has discussed the problem of selecting the num-
ber of breaks and their locations in the covariance struc-
ture of a series by adopting a non-parametric approach
based on the evolutionary spectral density. The simulation
results are globally adequate and indicate that the informa-
tion criteria having heavy penalty are more precise in the
detection of the number of changes. The empirical results
relating to the return series of exchange rate euro/US
dollar are satisfactory and show that the covariance struc-
ture of the series considerably varies and the unconditional
volatility appears no constant. Another feature is that these
results confirm some recent works existing in the literature.
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